Sticky PostingsAll 242 fabric | rblg updated tags | #fabric|ch #wandering #reading
By fabric | ch -----
As we continue to lack a decent search engine on this blog and as we don't use a "tag cloud" ... This post could help navigate through the updated content on | rblg (as of 09.2023), via all its tags!
FIND BELOW ALL THE TAGS THAT CAN BE USED TO NAVIGATE IN THE CONTENTS OF | RBLG BLOG: (to be seen just below if you're navigating on the blog's html pages or here for rss readers)
-- Note that we had to hit the "pause" button on our reblogging activities a while ago (mainly because we ran out of time, but also because we received complaints from a major image stock company about some images that were displayed on | rblg, an activity that we felt was still "fair use" - we've never made any money or advertised on this site). Nevertheless, we continue to publish from time to time information on the activities of fabric | ch, or content directly related to its work (documentation).
Posted by Patrick Keller
in fabric | ch
on
Monday, September 11. 2023 14:29
Defined tags for this entry: 3d, activism, advertising, agriculture, air, algorithms, animation, archeology, architects, architecture, art, art direction, artificial reality, artists, atmosphere, automation, behaviour, bioinspired, biotech, blog, body, books, brand, character, citizen, city, climate, clips, code, cognition, collaboration, commodification, communication, community, computing, conditioning, conferences, consumption, content, control, craft, culture & society, curators, customization, data, density, design, design (environments), design (fashion), design (graphic), design (interactions), design (motion), design (products), designers, development, devices, digital, digital fabrication, digital life, digital marketing, dimensions, direct, display, documentary, earth, ecal, ecology, economy, electronics, energy, engineering, environment, equipment, event, exhibitions, experience, experimentation, fabric | ch, farming, fashion, fiction, films, food, form, franchised, friends, function, future, gadgets, games, garden, generative, geography, globalization, goods, hack, hardware, harvesting, health, history, housing, hybrid, identification, illustration, images, immaterial, information, infrastructure, installations, interaction design, interface, interferences, kinetic, knowledge, landscape, language, law, life, lighting, localization, localized, machinelearning, magazines, make, mapping, marketing, mashup, material, materials, media, mediated, mind, mining, mobile, mobility, molecules, monitoring, monography, movie, museum, music, nanotech, narrative, nature, networks, neurosciences, new-material, non-material, opensource, operating system, participative, particles, people, perception, photography, physics, physiological, politics, pollution, presence, print, privacy, product, profiling, projects, psychological, public, publications, publishing, reactive, real time, recycling, research, resources, responsive, ressources, robotics, rules, scenography, schools, science & technology, scientists, screen, search, security, semantic, sharing, shopping, signage, smart, social, society, software, solar, sound, space, spatial, speculation, statement, surveillance, sustainability, tactile, tagging, tangible, targeted, teaching, technology, tele-, telecom, territory, text, textile, theory, thinkers, thinking, time, tools, topology, tourism, toys, transmission, trend, typography, ubiquitous, urbanism, users, variable, vernacular, video, viral, vision, visualization, voice, vr, war, weather, web, wireless, world, worldbuilding, writing
Thursday, July 11. 2013What Ant Colony Networks Can Tell Us About What’s Next for Digital Networks
Via Next Nature -----
Ever notice how ant colonies so successfully explore and exploit resources in the world … to find food at 4th of July picnics, for example? You may find it annoying. But as an ecologist who studies ants and collective behavior, I think it’s intriguing — especially the fact that it’s all done without any central control. What’s especially remarkable: the close parallels between ant colonies’ networks and human-engineered ones. One example is “Anternet”, where we, a group of researchers at Stanford, found that the algorithm desert ants use to regulate foraging is like the Traffic Control Protocol (TCP) used to regulate data traffic on the internet. Both ant and human networks use positive feedback: either from acknowledgements that trigger the transmission of the next data packet, or from food-laden returning foragers that trigger the exit of another outgoing forager. This research led some to marvel at the ingenuity of ants, able to invent systems familiar to us: wow, ants have been using internet algorithms for millions of years! But insect behavior mimicking human networks — another example are the ant-like solutions to the traveling salesman problem provided by the ant colony optimization algorithm — is actually not what’s most interesting about ant networks. What’s far more interesting are the parallels in the other direction: What have the ants worked out that we humans haven’t thought of yet? During the 130 million years or so that ants have been around, evolution has tuned ant colony algorithms.
During the 130 million years or so that ants have been around, evolution has tuned ant colony algorithms to deal with the variability and constraints set by specific environments. Ant colonies use dynamic networks of brief interactions to adjust to changing conditions. No individual ant knows what’s going on. Each ant just keeps track of its recent experience meeting other ants, either in one-on-one encounters when ants touch antennae, or when an ant encounters a chemical deposited by another. Such networks have made possible the phenomenal diversity and abundance of more than 11,000 ant species in every conceivable habitat on Earth. So Anternet, and other ant networks, have a lot to teach us. Ant protocols may suggest ways to build our own information networks… Dealing with High Operating CostsHarvester ant colonies in the desert must spend water to get water. The ants lose water when foraging in the hot sun, and get their water by metabolizing it out of the seeds that they collect. Since colonies store seeds, their system of positive feedback doesn’t waste foraging effort when water costs are high — even if it means they leave some seeds “on the table” (or rather, ground) to be obtained on another, more humid day. In this way, the Anternet allows the colony to deal with high operating costs. In the internet, the TCP protocol also prevents the system from sending data out on the internet when there’s no bandwidth available. Effort would be wasted if the message is lost, so it’s not worth sending it out unless it’s certain to reach its destination. More recently, I’ve shown how natural selection is currently optimizing the Anternet algorithm. I’ve been following a population of 300 harvester ant colonies for more than 25 years, and by using genetic fingerprinting we figured out which colonies had more offspring colonies. Colonies store food inside the nest as a survival tactic. On especially hot days, colonies that are likely to lay low instead of collecting more food are the ones that have more offspring colonies over their 25-year lifetimes. Restraint therefore emerges as the best strategy at the colony level. Long-lived colonies in the desert regulate their behavior not to maximize or optimize food intake, but instead to keep going without wasting resources. In the face of scarcity, the algorithm that regulates the flow of ants is evolving toward minimizing operating costs rather than immediate accumulation. This is a sustainable strategy for any system, like a desert ant colony or the mobile internet, where it’s essential to achieve long-term reliability while avoiding wasted effort. Scaling Up from Small to Large SystemsWhat happens when a system scales up? Like human-engineered systems, ant systems must be robust to scale up as the colony grows, and they have to be able to tolerate the failure of individual components. Since large systems allow for some messiness, the ideal solutions utilize the contributions of each additional ant in such a way that the benefit of an extra worker outweighs the cost of producing and feeding one. The tools that serve large colonies well, therefore, are redundancy and minimal information. Enormous ant colonies function using very simple interactions among nameless ants without any address. In engineered systems we too are searching for ways to ensure reliable outcomes, as our networks scale, by using cheap operations that make use of randomness. Elegant top-down designs are appealing, but the robustness of ant algorithms shows that tolerating imperfection sometimes leads to better solutions. Optimizing for First-Mover AdvantageThe diversity of ant algorithms shows how evolution has responded to different environmental constraints. When operating costs are low and colonies seek an ephemeral delicacy — like flower nectar or watermelon rinds — searching speed is essential if the colony is to capture the prize before it dries up or is taken away. In the face of scarcity, the algorithm that regulates the flow of ants is evolving toward minimizing operating costs rather than immediate accumulation.
Since ant colonies compete with each other and many are out looking for the same food, the first colony to arrive might have the best chance of holding on to the food and keeping the other ants away. How does a colony achieve this first-mover advantage without any central control? The challenge in this situation is for the colony to manage the flow of ants so it has an ant almost everywhere almost all the time. The goal is to increase the likelihood that some ant will be close enough to encounter whatever happens to show up. One strategy ants use (familiar from our own data networks) is to set up a circuit of permanent highways — like a network of cell phone towers — from which ants search locally. The invasive Argentine ants are experts at this; they’ll find any crumb that lands on your kitchen counter. The Argentine ants also adjust their paths, shifting from a close to random walk when there are lots of ants around, leading each ant to search thoroughly in a small area, to a straighter path when there are few ants around, thus allowing the whole group to cover more ground. Like a distributed demand-response network, the aggregated responses of each ant to local conditions generates the outcome for the whole system, without any centralized direction or control. Addressing Security Breaches and DisastersIn the tropics, where hundreds of ant species are packed close together and competing for resources, colonies must deal with security problems. This has led to the evolution of security protocols that use local information for intrusion detection and for response. One colony might use (“borrow” or “steal”, as humans would say) information from another, such as chemical trails or the density of ants, to find and use resources. Rather than attempting to prevent incursions completely, however, ants create loose, stochastic identity systems in which one species regulates its behavior in response to the level of incursion from another. There are obvious parallels with computer security. It’s becoming clear (consider recent events!) that we too will need to implement local evaluation and repair of intrusions, tolerating some level of imperfection. The ants have found ways to let their systems respond to each others’ incursions, without attempting to set up a central authority that regulates hacks. Ants have evolved security protocols that use local information for intrusion detection and response.
Some of our networks seem to be moving toward using methods deployed by the ants. Take the disaster recovery protocols of ants that forage in trees where branches can break, so the threat of rupture is high. A ring network, with signals or ants flowing in both directions, allows for rapid recovery here; after a break in the flow in one direction, the flow in the other direction can re-establish a link. Similarly, early fiber-optic cable networks were often disrupted by farm machinery and other digging: one break could bring down the system because it would isolate every load. Engineers soon discovered, as ants have already done, that ring networks would create networks that are easier to repair. *** Our networks will continue to change and evolve. By examining and comparing the algorithms used by ants in the desert, in the tropical forest, and the invasive species that visit our kitchens, it’s already obvious that the ants have come up with new solutions that can teach us something about how we should engineer our systems. Using simple interactions like the brief touch of antennae — not unlike our fleeting status updates in ephemeral social networks — colonies make networks that respond to a world that constantly changes, with resources that show up in patches and then disappear. These networks are easy to repair and can grow or shrink. Ant colonies have been used throughout history as models of industry, obedience, and wisdom. Although the ants themselves can be indolent, inconsiderate of others, and downright stupid, we have much to learn from ant colony protocols. The ants have evolved ways of working together that we haven’t yet dreamed of. - Story via Wired. Image Shutterstock.
Personal comment: Not only do the ants build amazing architectures, they are also using algorithms and networks for millenia to achieve quite sustainable results and behaviors. As the article suggest, should we learn from ants? Thursday, April 04. 2013"fabric | ch – Perpetual (Tropical) Sunshine", Natures Artificielles (cur. Ch. Carcopino), MAC Créteil (Paris, 2013)
Posted by Patrick Keller
in fabric | ch, Art, Science & technology, Territory
at
14:33
Defined tags for this entry: art, artificial reality, catalogue, exhibitions, exhibitions-fbrc, fabric | ch, interferences, nature, publications, publications-fbrc, science & technology, territory
Wednesday, May 09. 2012Water vs. WorldVia BLDGBLOG ----- [Image: Illustration by Jack Cook, Woods Hole Oceanographic Institution; courtesy of the USGS].
Thursday, April 26. 2012Tele-present environments
In the "tele-present" environments serie and after the water, here comes the wind, by David Bowen:
See also his previous work, "Tele-present water" that has been published a lot already.
PS. Thanks Sinan Mansuroglu for the link.
Related Links:Personal comment:
It is a very direct translation of the source, very readable and therefore quite efficient (but also possibly too direct, like a roboticized reproduction). In this case, we are confronted to a kinetic sculpture, which makes it works, especially in the case of the water. It is, literaly, a kinetic sculpture in the abstract realism tradition.
Posted by Patrick Keller
in Art, Interaction design
at
07:48
Defined tags for this entry: art, artificial reality, artists, environment, interaction design, nature, tele-
Wednesday, April 11. 2012Luz Interruptus: "Mutant weeds", pop-up installation
Taken out from this article on Domusweb, we just liked this image of a speculative "mutant glowing weed" that would grow under the permanent light of an overilluminated (green led based) pharmacy sign. A "pharma weed". As the group state "So much light emanates from the new led based crosses, that the environment that surrounds each pharmacy is permanently tinted a deep, vibrant and unnatural green color". Based in Madrid, the group tries the point with its pop-up installation that "of all the environmental pollution that can be found in the city of Madrid, the most evident is light pollution. This overillumination is evident to the naked eye at a distance of more than 200 kms and produces a glow that can be seen with a medium-size telescope for more than 700 kms."
Related Links:
Posted by Patrick Keller
in Art, Territory
at
09:33
Defined tags for this entry: art, artificial reality, artists, hybrid, installations, lighting, nature, speculation, territory
Friday, December 16. 2011Western Soundscape Archive Preserves the Sounds of NatureVia TreeHugger ----- de Stephen Messenger
Finally, the squeaks of a field mouse at the click of a mouse:http://westernsoundscape.org/
Related Links:Monday, July 25. 2011Do trees communicate? Networks, networks…Via Smart Mobs
-----
by Judy Breck
For a mob to be smart it needs to be able to network. The fascinating work of Dr. Suzanne Simard says that trees do just that: use networks to communicate. Brian Lamb introduces what is being learned from mycorrhizal networks in a post on his blog Abject.
Tuesday, February 01. 2011Fourth Natures: Mediated LandscapesInfraNet Lab is pleased to announce that we will be hosting a conference entitled ‘Fourth Nature: Mediated Landscapes’ at the University of Waterloo, School of Architecture, in Cambridge, ON, this Friday, Feb. 4th and Saturday, Feb. 5th. The conference brings together scholars and practitioners working at the disciplinary intersection of architecture, infrastructure, landscape and environment to present research and projects that propose emerging models for understanding ‘nature’, in its various scales and guises, in the 21st century. From the territorial to the nano-scale, mutant environments which fuse natural and artificial, technologic and infrastructural have been proliferating. Natures are monitored and controlled, ecologies are amplified or manufactured and interior landscapes are conditioned, with the intent of augmenting performance, controlling the flow of resources, monitoring data or redressing environmental imbalances. In the current scenario, the dialectic is no longer nature versus city, or natural versus artificial, but positions within a spectrum of mediation and manipulation of nature, landscape and built environment. Speakers include: Keynote Fourth Natures: New Contexts Fourth Natures: New Disciplines Fourth Natures: New Practices Detailed information about the conference schedule and speakers can be found at: http://www.architecture.uwaterloo.ca/fourthnatures/
Posted by Patrick Keller
in Architecture, Territory
at
09:46
Defined tags for this entry: architects, architecture, artificial reality, conferences, ecology, infrastructure, interferences, mediated, nature, territory, thinkers
Friday, November 12. 2010A Different View from the Top of the WorldI've always thought Mount Everest was just OK. Sure, vaulting majestically out of the Earth more than 29,000 feet is impressive, but then what? Like many remote locales, Everest's natural "beauty" has been offset by a lack of conveniences. Until now. Last week Ncell, a telecom company based in Nepal, announced that it had installed antennas at Everest's base camp that will let climbers make phone calls, video chat and surf the Web at the summit. Which begs the obvious question: what took so long? For years climbers have felt off the grid simply because they were more than five miles above sea level and could wave at passing airplanes. Well, that era is over. Now successful mountaineers can call their friends and family, post a celebratory video message to You Tube and add old-timey mustaches to pictures of the mountain. And just because they're struggling to stay alive at 70 below zero doesn't mean they can't keep up with the latest developments at the "wicked keggr @ Brody's house 2NITE!" We non-climbers are sure to benefit too. Previously the only way to know what it was like to reach the summit was to wait for someone to descend from the peak and describe it to you. Who has time for that? Now we can share the moment as it happens. Who wouldn't want to hear the wind-blasted ramblings of a mortally exhausted person sucking in air with 40 percent less oxygen? Although ideally if they could wrap up the whole "climbing the tallest mountain in the world" experience in 140 characters and toss it on Twitter, we could all get on with our lives. And a tech upgrade is certain to do wonders for Everest's tourist industry. Let's be honest, the place is more than a little out of the way, and the lack of adequate 3G reception has always been a bit of a turn off. I won't even go to a friend's house unless I'm 100 percent positive his Wi-Fi is working. But now that Everest is dialed in, it's going to be bustling with foot traffic, which is sure to attract restaurants, bookstores, and artisanal salami shops, and the next hot gentrified neighborhood will be Mount Everest. Or should I say, "Everest Heights"? Isn't this our destiny? We have found a way to make Mount Everest just like every other place on earth. We have taken arguably the most difficult-to-access spot on the planet and given it the same interconnectivity as a Starbucks. I say it's a sign of respect to the hill that the locals call Sagarmatha (which means "Everest Heights," presumably) that we have brought it into the 21st century and allowed it to bask in the glory of our technology. Mount Everest used to be The Tallest Mountain on Earth, but now it's something even more special: The Tallest Hot Spot on Earth. Peter Grosz is a writer and actor in Los Angeles. He won Emmy awards in 2008 and 2010 for his writing for The Colbert Report and has appeared on NPR's Wait, Wait, Don't Tell Me. Image credit: Luca Galuzzi (CC)
Posted by Patrick Keller
in Science & technology, Territory
at
10:52
Defined tags for this entry: artificial reality, interferences, nature, science & technology, territory
(Page 1 of 2, totaling 15 entries)
» next page
|
fabric | rblgThis blog is the survey website of fabric | ch - studio for architecture, interaction and research. We curate and reblog articles, researches, writings, exhibitions and projects that we notice and find interesting during our everyday practice and readings. Most articles concern the intertwined fields of architecture, territory, art, interaction design, thinking and science. From time to time, we also publish documentation about our own work and research, immersed among these related resources and inspirations. This website is used by fabric | ch as archive, references and resources. It is shared with all those interested in the same topics as we are, in the hope that they will also find valuable references and content in it.
QuicksearchCategoriesCalendar
Syndicate This BlogBlog Administration |